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Motivation

Polytopal methods
‚ Increasingly popular choice for dealing with complex geometries.
‚ Often non-conforming and hybrid in nature (DG, HHO, HDG,

non-conforming VEM, ...).
‚ Efficient solvers for the resulting large sparse linear systems are

needed.

Balancing domain decomposition by constraints (BDDC)
‚ Popular family of robust and scalable preconditioners.
‚ Traditional robustness proofs rely on continuous trace and lifting

inequalities, which are not available for non-conforming methods.
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Hybrid spaces

We consider the hybrid space Uh “ Uh ˆ UB
h , where

Uh
.
“

ą

tPTh

Pkptq, UB
h

.
“

ą

fPFh

Pkpfq, UB,bd
h

.
“

ą

fPFbd
h

Pkpfq

For each vh “ ppvtqtPTh
, pvf qfPFtq P Uh we define the discrete

H1pΩq-seminorm

|vh|1,h
.
“

˜

ÿ

tPTh

|vh|21,t

¸1{2

|vh|21,t
.
“ }∇vt}

2
L2ptq `

ÿ

fPFt

h´1
t }vf ´ vt}

2
L2pfq.
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Discrete trace theory (I)1

We define the discrete H1{2pBΩq-seminorm

|wh|21{2,h
.
“

ÿ

fPFbd
h

h´1
f }wf ´wf }2L2pfq `

ÿ

pf,f 1qPFFbd
h

|f |d´1|f 1|d´1
|wf ´ wf 1 |2

|xf ´ xf 1 |d
,

Theorem: Trace inequality

|γpvhq|1{2,h À |vh|1,h @vh P Uh

Theorem: Lifting inequality

There exists a lifting Lh : UB,bd
h Ñ Uh such that

|Lhpwhq|1,h À |wh|1{2,h @wh P UB,bd
h

1Santiago Badia, Jérôme Droniou, and Jai Tushar. A discrete trace theory for non-conforming polytopal

hybrid discretisation methods. 2024. arXiv: 2409.15863 [math.NA].
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Discrete trace theory (II)

Theorem: Truncation estimate
Consider Γ “

Ť

fPFhpΓq clpfq Ă BΩ and vh P Uh such that

ż

Γ

γpvhq “ 0

Define wh P UB,bd
h as

@f P Fbd
h wf “

#

vf if f P FhpΓq,

0 if f R FhpΓq.

Then, under regularity assumptions for Γ, we have

|wh|1{2,h À

ˆ

1 ` ln

ˆ

diampΩq

h

˙˙

|vh|1,h,
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Domains and meshes

Fine mesh: For a domain Ω with boundary BΩ, we consider
‚ A partition Th of Ω into polytopes t.
‚ Its skeleton Fh “ Fbd

h Y F in
h with faces f .

‚ For each t P Th, we denote by Fhptq the subset of its faces.

Coarse mesh: we consider an agglomeration pTH ,FHq s.t.
‚ Each subdomain T P TH is a union of polytopes t P ThpT q.
‚ Each coarse face F P FH is a union of faces f P FhpF q.
‚ For each T P TH , we denote by FHpT q the subset of its coarse faces.

t

T

f

F
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Sub-assembled spaces

Given the fine mesh pTh,Fhq and its coarse agglomeration pTH ,FHq:

‚ Hybrid space pUh - Single-valued on interfaces
‚ Broken space Uh - Double-valued on interfaces
‚ Bubble space Uh,0 - Zero on interfaces

pUh “ Uh ˆ pUB
h Uh “ Uh ˆ UB

h

0

0

0
0

0
0

0

0

Uh,0 “ Uh ˆ UB
h,0
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Coarse constraints

We take as coarse DoFs the average on each coarse face F P FH

λF pvhq “
1

|F |

ż

F

γpvhq , Λ “
ď

FPFH

λF

We define the BDDC space rUh of
functions that are

‚ double valued on interfaces
‚ single-valued coarse DoFs

λF pvhpT qq “ λF pvhpT 1qq

for T, T 1 neighbors of F .
rUh “ Uh ˆ rUB

h
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Abstract problem formulation

We consider A a coercive differential operator on Ω, and l a linear
functional. We assume homogeneous Dirichlet boundary conditions.

Continuous problem: Find u P U such that for all v P U0 we have

xAu, vy “ xl, vy

Discrete problem: Find uh P pUh such that for all vh P pUh,0 we have

x pAhuh, vhy “ xlh, vhy

where:
‚ Ah the discrete approximation of A on Uh.

‚ pAh the restriction of Ah on pUh.

‚ rAh the restriction of Ah on rUh.
‚ Ah,0 the restriction of Ah on Uh,0.

8



Discrete harmonic spaces

Discrete harmonic space Hh such that Hh KAh
Uh,0

Harmonic extension operator Eh : Uh Ñ Hh such that given wh P Uh,

xAhEhwh, vhy “ 0 @vh P Uh,0

Ehwh “ wh on FH

‚ Functions in Hh are fully determined by their values on the interface.
‚ Eh is the minimum energy lifting w.r.t Ah.

Wh
ÝÝÑ

Eh
ÝÝÑ

9



Weighting operator

Define the weighting operator Wh : Uh Ñ pUh such that

pWhuhq|F “
1

2

`

uhpT q|F ` uhpT 1q|F
˘

@F P FH

where T and T 1 are the two subdomains sharing the face F .

We consider the operator Qh “ EhWh : Uh Ñ pHh.

Wh
ÝÝÑ

Eh
ÝÝÑ
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Preconditioner

We define the BDDC preconditioner pBh : pU
˚

h Ñ pUh as

pBh “ Qh
rA´1
h QT

h ` I0A´1
h,0I

T
0

with I0 : Uh,0 Ñ pUh the natural injection 1.

Theorem: Spectral equivalence

Under the assumption that || ¨ ||Ah
» || ¨ ||1,h

κ
´

pBh
pAh

¯

À

ˆ

1 ` ln
H

h

˙2

where the hidden constant does not depend on H, h and the number of
subdomains.

1See Appendix A for implementation details.
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Proof: Spectral equivalence (I)

From abstract aditive Schwartz theory1, we have

κ
´

pBh
pAh

¯

ď max

#

1, sup
vhP rUh

}Qhvh}2Ah

}vh}2Ah

+

ď max

#

1, 1 ` sup
vhPĂHh

}Qhvh ´ vh}2Ah

}vh}2Ah

+

.

Let wh “ Qhvh ´ vh.

1Jan Mandel, Bedřich Sousedı́k, and Clark R. Dohrmann. “Multispace and multilevel BDDC”. In:

Computing 83.2–3 (Sept. 2008), pp. 55–85. DOI: 10.1007/s00607-008-0014-7.
12
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Proof: Spectral equivalence (II)

We define the face restriction operators θTF which takes a function vh and
1. Restrict a function to the macro face F .
2. Extends it by zero to BT

3. Extends it harmonically to T

T T 1F

vhpT q

θTF pvhpT qq

Corollary: Truncation estimate

Let F P FHpT q and vhpT˚q P UhpT˚q, for T˚ P tT, T 1u, which satisfies
ş

F
γF pvhpT˚qq “ 0. Then the following estimate holds:

|γF pθTF pvhqq|1{2,h,BT À

ˆ

1 ` ln
H

h

˙

|vh|1,h,T˚ .
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Proof: Spectral equivalence (III)

One can see that for wh “ Qhvh ´ vh we have

whpT q “
ÿ

FPFHpT q

θTF pwhq , θTF pwhq “
1

2

“

θTF pvhpT 1qq ´ θTF pvhpT qq
‰

Then using the above and triangle inequalities, we get

}Qhvh ´ vh}2Ah
À

ÿ

TPTH

ÿ

FPFHpT q

}θTF pwhq}2Ah,T
,

Each of the terms can be bounded by

}θTF pwhq}2Ah,T
À |γBT pθTF pwhqq|21{2,h,BT ▷ norm eq. and lifting

À |θTF pvhpT q ´ αF q|21{2,h,BT ` |θTF pvhpT 1q ´ αF q|21{2,h,BT

where we have added and substracted a constant αF P R.
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Proof: Spectral equivalence (IV)

Since vh P ĂHh, we can choose αF “ λF pvhpT qq “ λF pvhpT 1qq so that
ż

F

γF
`

vhpT 1q ´ αF

˘

“

ż

F

γF pvhpT q ´ αF q “ 0

Then

}θTF pwhq}2Ah,T
À

ˆ

1 ` ln
H

h

˙2
`

|vhpT q|21,h,T ` |vhpT 1q|21,h,T 1

˘

▷ truncation

À

ˆ

1 ` ln
H

h

˙2
`

}vhpT q}2Ah,T
` }vhpT 1q}2Ah,T 1

˘

▷ norm eq.

and finally

}wh}2Ah
À

ˆ

1 ` ln
H

h

˙2

}vh}2Ah
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Problem setup

We solve the Poisson problem with Dirichlet bcs on Ω “ r0, 1s2

´∆u “ f in Ω, u “ g on BΩ

We use Nc ˆ Nc simplexified cartesian meshes, and their Voronoi
counterparts, partitioned into Np ˆ Np processors.

Figure 1: Left: simplexified mesh. Right: Voronoi mesh. Distributed amongst
Np “ 6 processors, with colors mapping to the processor id.
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Problem setup

We test our preconditioner for several popular schemes in the literature:
‚ Hybrid High-Order (HHO)1

‚ Mixed-order HHO2

‚ Hybridazable Discontinuous Galerkin (HDG)3,4

1Daniele A. Di Pietro and Alexandre Ern. “A hybrid high-order locking-free method for linear elasticity on

general meshes”. In: Computer Methods in Applied Mechanics and Engineering 283 (2015), pp. 1–21.

DOI: https://doi.org/10.1016/j.cma.2014.09.009.
2Matteo Cicuttin, Alexandre Ern, and Nicolas Pignet. Hybrid High-Order Methods: A Primer with

Applications to Solid Mechanics. Mathematical Engineering. Springer International Publishing, 2021.

DOI: 10.1007/978-3-030-81477-9.
3Bernardo Cockburn, Jayadeep Gopalakrishnan, and Raytcho Lazarov. “Unified Hybridization of

Discontinuous Galerkin, Mixed, and Continuous Galerkin Methods for Second Order Elliptic Problems”.

In: SIAM Journal on Numerical Analysis (2009). DOI: 10.1137/070706616.
4Shukai Du and Francisco–Javier Sayas. “A note on devising HDG+ projections on polyhedral

elements”. In: arXiv: Numerical Analysis (2020). DOI: 10.1090/mcom/3573.
17
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Benchmarks

Implementation Julia, using the Gridap1 ecosystem. MPI support through
GridapDistributed.jl and PartitionedArrays.jl2. Solvers implemented in
GridapSolvers.jl3.

We perform weak scalability tests, that is
‚ constant local problem size, Nc{Np „ H{h

‚ increasing Np up to 768 processors
All experiments are run on the Gadi supercomputer at NCI.

1Santiago Badia and Francesc Verdugo. “Gridap: An extensible Finite Element toolbox in Julia”. In:

Journal of Open Source Software 5.52 (2020), p. 2520. DOI: 10.21105/joss.02520.
2Santiago Badia, Alberto F. Martı́n, and Francesc Verdugo. “GridapDistributed: a massively parallel

finite element toolbox in Julia”. In: Journal of Open Source Software 7.74 (2022), p. 4157. DOI:

10.21105/joss.04157.
3Jordi Manyer, Alberto F. Martı́n, and Santiago Badia. “GridapSolvers.jl: Scalable multiphysics finite

element solvers in Julia”. In: Journal of Open Source Software 9.102 (2024), p. 7162. DOI:

10.21105/joss.07162.
18
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Results (I)
HDG of structured meshes

Figure 2: Number of CG iterations, as a function of the number of processors.
Cases: HDG with H{h = 8 (left) and H{h = 16 (right).

19



Results (II)
HHO of structured meshes

Figure 3: Number of CG iterations, as a function of the number of processors.
Cases: HHO with H{h = 8 (left) and H{h = 16 (right).
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Results (III)
Mixed-order HHO of structured meshes

Figure 4: Number of CG iterations, as a function of the number of processors.
Cases: Mixed-order HHO with H{h = 8 (left) and H{h = 16 (right).
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Results (IV)
HDG+ of voronoi meshes

Figure 5: Number of CG iterations, as a function of the number of processors.
Cases: HDG+ with H{h = 8 (left) and H{h = 16 (right).
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Results (V)
HHO of voronoi meshes

Figure 6: Number of CG iterations, as a function of the number of processors.
Cases: HHO with H{h = 8 (left) and H{h = 16 (right).
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Results (VI)
Mixed-order HHO of voronoi meshes

Figure 7: Number of CG iterations, as a function of the number of processors.
Cases: Mixed-order HHO with H{h = 8 (left) and H{h = 16 (right).
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Results 3D (I)
HDG of 3D structured meshes

Figure 8: Number of CG iterations, as a function of the number of processors.
Cases: HDG with H{h = 4 (left) and H{h = 8 (right).
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Results 3D (II)
Mixed-order HHO of 3D structured meshes

Figure 9: Number of CG iterations, as a function of the number of processors.
Cases: Mixed-order HHO with H{h = 4 (left) and H{h = 8 (right).
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Thank you!
S. Badia, J. Droniou, J. Manyer, J. Tushar, “Analysis of BDDC preconditioners for
non-conforming polytopal hybrid discretisation methods”, preprint available.

S. Badia, J. Droniou, J. Tushar, “A discrete trace theory for non-conforming polytopal hybrid
discretisation methods.”, preprint available.

J. Manyer, A. Martin, S. Badia “GridapSolvers: Scalable multiphysics finite element solvers
in Julia“, Journal of Open Source Software, 2024.

▷ Get slides for Part I and Part II of this talk.

Computational resources for this work were provided by NCI through the
NCMAS public scheme and the Monash-NCI partnership.
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Appendix A - Implementation details for BDDC (I)

Our preconditioner is given by

pBh “ Qh
rA´1
h QT

h ` I0A´1
h,0I

T
0

Given a residual prh, it returns a correction pzh “ rzh ` zh,0 given by

rzh “ Qh
rA´1
h QT

h prh , zh,0 “ I0A´1
h,0I

T
0 prh

We can further split the problem by considering rUh “ rUh,0

À

rUh,c where

‚ rUh,0 is the subset of rUh with zero coarse DoF values.

‚ rUh,c is the complementary, i.e the subset of rUh with at least one
non-zero coarse DoF value.

We can write rzh “ Qhprzh,0 ` rzh,cq with

rzh,0 “ rA´1
h,0rh , rzh,c “ rA´1

h,crh , rh “ QT
h prh
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Appendix A - Implementation details for BDDC (II)

Let A be the matrix representation of Ah, i.e the sub-assembled system
matrix. We have that

‚ A is block-diagonal, with blocks Ak corresponding to subdomains.
‚ Each block Ak can be locally split into interior/interface blocks, i.e

Ak “

„

Ak
II Ak

IΓ

Ak
ΓI Ak

ΓΓ

ȷ

Also:
‚ Let Ck be the matrix representation of the coarse constraints, local

to each processor.
‚ Let RI “ diagpRk

I q and RΓ “ diagpRk
Γq be the interior and interface

restrictions, respectively.
‚ Let W be the matrix representation of Wh.

33



Appendix A - Implementation details for BDDC (III)
Interior correction

‚ The block-diagonal matrix AII “ diagpAk
IIq is the matrix

representation of Ah,0.
‚ The block-diagonal matrix RI “ diagpRk

I q is the matrix
representation of IT0 .

Then if we take z0, pr the vector representations of zh,0, prh respectively, we
have

z0 “ RT
I A

´1
II RIpr

which can be solved locally on each processor.
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Appendix A - Implementation details for BDDC (IV)
Fine correction

The fine correction
rzh,0 “ rA´1

h,0rh

can be computed locally by solving
»

–

Ak
II Ak

IΓ

Ak
ΓI Ak

ΓΓ pCkqT

Ck

fi

fl ¨

»

–

rzk0,I
rzk0,Γ
λk

fi

fl “

»

–

rkI
rkΓ
0

fi

fl

where rz0, r the vector representations of rzh,0, rh respectively, and
„

rzk0,I
rzk0,Γ

ȷ

“

„

Rk
I

Rk
Γ

ȷ

¨ rzk0 ,

„

rkI
rkΓ

ȷ

“

„

Rk
I

Rk
Γ

ȷ

¨ rk
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Appendix A - Implementation details for BDDC (V)
Coarse correction

We have rUh,c “ spantϕλuλPΛ, where ϕλ is the global basis function that
is one on λ and zero on all other coarse degrees of freedom. Denote by
Φ the matrix that has columns ϕλ.

We can compute Φk, by solving the local problems
»

–

Ak
II Ak

IΓ

Ak
ΓI Ak

ΓΓ pCkqT

Ck

fi

fl ¨

»

–

Φk
I

Φk
Γ

λk

fi

fl “

»

–

0
0
Id

fi

fl

The matrix representation of rAh,c is then given by

rA´1
c “ ΦS´1

c ΦT , Sc “
ÿ

k

Sk
c “

ÿ

k

pΦkqTAkΦk
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Appendix A - Implementation details for BDDC (VI)
Coarse correction1

Generally, Sc is assembled into a
single processor and factorized. The
coarse correction then involves:

1. gathering the local coarse
residuals rkc “ pΦkqT rk into a
single processor,

2. solving the coarse problem, and
3. scattering the result back to

each processor and doing a
linear combination with the
basis, to obtain rzkc .

Figure 10: Processor layout for
computing BDDC corrections.

1Santiago Badia, Alberto F. Martı́n, and Javier Principe. “A Highly Scalable Parallel Implementation of

Balancing Domain Decomposition by Constraints”. In: SIAM Journal on Scientific Computing 36.2

(2014), pp. C190–C218. DOI: 10.1137/130931989. eprint: https://doi.org/10.1137/130931989.
37
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Appendix B - HHO formulation for the Poisson problem (I)1,2

Given a polynomial order k, we consider the local and global HHO
spaces

Uk
T “

␣

pvT , pvF qFPFT
q : vT P PkpT q, vF P PkpF q @F P FT

(

Uh “
␣

ppvT qTPTh
, pvF qFPFh

q : vT P PkpT q @T P Th, vF P PkpF q @F P Fh

(

1Daniele Antonio Di Pietro and Jérôme Droniou. The Hybrid High-Order Method for Polytopal Meshes:

Design, Analysis, and Applications. Vol. 19. MS&A. Springer, 2020. DOI: 10.1007/978-3-030-37203-3.
2Matteo Cicuttin, Alexandre Ern, and Nicolas Pignet. Hybrid High-Order Methods: A Primer with

Applications to Solid Mechanics. Mathematical Engineering. Springer International Publishing, 2021.

DOI: 10.1007/978-3-030-81477-9.
38
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Appendix B - HHO formulation for the Poisson problem (II)

Potential reconstruction operator

We define Rk`1
T vT : Uk

T Ñ Pk`1pT q such that @w P Pk`1pT q we have

`

∇Rk`1
T vT ,∇w

˘

T
“ p∇vT ,∇wqT `

ÿ

FPFT

pvF ´ vT ,∇w ¨ nTF qF

`

Rk`1
T vT , w

˘

T
“ pvT , wqT

Difference operators

We define δkT vT : Uk
T Ñ PkpT q and δkF vF : Uk

T Ñ PkpF q as

δkT vT “ πk
T pRk`1

T vT ´ vT q , δkTF vT “ πk
F pRk`1

T vT ´ vF q

39



Appendix B - HHO formulation for the Poisson problem (III)

The global problem is then given by: Find uh P Uh,0 such that @vh P Uh,0

ahpuT , vT q “ bhpvT q

with

ahpuT , vT q “
ÿ

TPTh

aT puT , vT q , bhpvT q “
ÿ

TPTh

pf, vT qT ,

and where the local contributions are given by

aT puT , vT q “
`

∇Rk`1
T uT ,∇Rk`1

T vT
˘

T
` sT puT , vT q

sT puT , vT q “
ÿ

FPFT

h´1
F

“`

δkTF ´ δkT
˘

uT ,
`

δkTF ´ δkT
˘

vT
‰
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