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Polytopal methods
¢ Increasingly popular choice for dealing with complex geometries.

o Often non-conforming and hybrid in nature (DG, HHO, HDG,
non-conforming VEM, ...).

o Efficient solvers for the resulting large sparse linear systems are
needed.

Balancing domain decomposition by constraints (BDDC)
e Popular family of robust and scalable preconditioners.

o Traditional robustness proofs rely on continuous trace and lifting
inequalities, which are not available for non-conforming methods.
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1. Truncation estimates for piece-wise broken polynomials



Hybrid spaces

We consider the hybrid space U, = U, x U, where

Un= X Pit), UZ= X Pp(f), UPP= X Pu(f)

teTh feFn feFbd

For each v;, = ((v¢)ieTs,, (vf) rer,) € U, we define the discrete

H'(©Q)-seminorm
1/2
|yh‘17h = <Z |Uh|%,t>

teTh
|yh‘%,t = vatH%Q(t) + Z ht_lﬂvf - UtH2L2(f)-
feF:

k=0 k=1 k=2



Discrete trace theory (1)’

We define the discrete H'/2(052)-seminorm

. _ | —wy|?
\whﬁ/z,h = E hf1||wf *wf\|%2(f) + E | fla—1lf'la-1 L 7
feFbd (f.f")eFFba

Theorem: Trace inequality
[v(@p)l1j2,n S [wplin Vuy, € Uy,

Theorem: Lifting inequality
There exists a lifting £, : U{"" — U, such that

1Lh(wn)|in S [wnlyjen Ve UPP

"Santiago Badia, Jérome Droniou, and Jai Tushar. A discrete trace theory for non-conforming polytopal
hybrid discretisation methods. 2024. arXiv: 2409.15863 [math.NAJ].


https://arxiv.org/abs/2409.15863

Discrete trace theory (ll)

Theorem: Truncation estimate
Consider I" = Ufefh(r) cl(f) € o and v, € U,, such that

L Y(vp) =0

Define wy, € U as

vf if f € ]:},,(F),

bd _
vieFS wr= {o it f ¢ Fu(D).

Then, under regularity assumptions for I', we have

diam(2
|whl1/2,n S (1 +In (h()>> lvp |1,k
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2. Preconditioner & condition number estimates



Domains and meshes

Fine mesh: For a domain Q with boundary 052, we consider
e A partition 7;, of 2 into polytopes ¢.
e Its skeleton 7, = 74 U Fi» with faces f.
e For each t € T;, we denote by 75 (t) the subset of its faces.

Coarse mesh: we consider an agglomeration (7x, F) s.t.
e Each subdomain T € Ty is a union of polytopes t € 75, (T).
e Each coarse face F' € Fy is a union of faces f € F,(F).
e For each T € Ty, we denote by F (7T') the subset of its coarse faces.




Sub-assembled spaces

Given the fine mesh (7., F,) and its coarse agglomeration (7, Frr):

e Hybrid space Qh - Single-valued on interfaces
e Broken space U, - Double-valued on interfaces
e Bubble space U, , - Zero on interfaces
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Coarse constraints

We take as coarse DoFs the average on each coarse face F € Fp

Ar(vp) = % JF y(u,), A= U AR

FeFy

We define the BDDC space U, of "

functions that are i
o double valued on interfaces O L
« single-valued coarse DoFs DR

111

ITI

Ar(Uh(T)) = Ar (v, (T7)) it

'l

for T, T" neighbors of F. N N
U, =U,xU;



Abstract problem formulation

We consider A a coercive differential operator on 2, and [ a linear
functional. We assume homogeneous Dirichlet boundary conditions.

Continuous problem: Find u € U such that for all v € Uy we have
(Au, vy =L, v)

Discrete problem: Find v, € Qh such that for all v;, € ﬁh’o we have

(Anwp, vpy = ay vy

where:
e A; the discrete approximation of A on U,,.
e A, the restriction of Aj, on U,
o Aj the restriction of Aj, on U,,.
e Ay the restriction of A, on U, .



Discrete harmonic spaces

Discrete harmonic space 4, suchthat H, L4, U,
Harmonic extension operator &, : U,, — H,, such that given w;,, € U,,,
(ArEpwy, vy =0 VYo, €Uy

Erwy, = wy, on Fy

e Functions in H,, are fully determined by their values on the interface.
e &, is the minimum energy lifting w.r.t Aj,.
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Weighting operator

Define the weighting operator W, : U; — Qh such that

(un(D)lF +w,(T)|r) YF € Fy

DN =

(Whay)|F =

where T and 7" are the two subdomains sharing the face F.

We consider the operator Q;, = W), : U, — ﬁh.
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Preconditioner

We define the BDDC preconditioner 3, : U, — U, as
B = Qu A, O + oAy b I3

with Iy : U, , — U, the natural injection .

Theorem: Spectral equivalence
Under the assumption that || - ||.4, ~ || - ||1.»

K (l?h.»zt\h) < <1 + In ]Z)Q

where the hidden constant does not depend on H, h and the number of
subdomains.

"See Appendix A for implementation details.



Proof: Spectral equivalence

From abstract aditive Schwartz theory', we have

B), A Qnvy, |?
H(Bh.Ah) < max< 1, sup %

v, vl
O, — vy |2
<max{1,1+ M
vel,  enlZ,

Let w), = Qnvy, — vy

1Jan Mandel, Bedfich Sousedik, and Clark R. Dohrmann. “Multispace and multilevel BDDC”. In:
Computing 83.2-3 (Sept. 2008), pp. 55-85. DOI: 10.1007/s00607-008-0014~-7.


https://doi.org/10.1007/s00607-008-0014-7

Proof: Spectral equivalence (ll)

We define the face restriction operators 6% which takes a function v, and
1. Restrict a function to the macro face F.
2. Extends it by zero to 0T
3. Extends it harmonically to T’

T F T

v (T)

0% (un(T)) |~—

Corollary: Truncation estimate

Let F e Fyu(T) and v, (T*) € U, (T*), for T* € {T, T'}, which satisfies
§7r (v, (T*)) = 0. Then the following estimate holds:

H
|7F(9§(gh>)|1/2,h,0T N (1 +1n h) v |1, 1% -



Proof: Spectral equivalence (ll)

We define the face restriction operators 6% which takes a function v, and
1. Restrict a function to the macro face F.
2. Extends it by zero to 0T
3. Extends it harmonically to T’

T I T

v, (1)

OF (0n(T7) |™~—

Corollary: Truncation estimate

Let F e Fyu(T) and v, (T*) € U, (T*), for T* € {T, T'}, which satisfies
§7r (v, (T*)) = 0. Then the following estimate holds:

H
|7F(9§(gh>)|1/2,h,0T N (1 +1n h) v |1, 1% -



Proof: Spectral equivalence (lll)

One can see that for w;, = Qv — v, we have

w,(T) = >, 0F(wy), 9?(%)=%[ﬁ(yh(T'))*9?@;}@))]
FeFu(T)

Then using the above and triangle inequalities, we get

HQth_QhHi\h S Z 2 Heg(ﬂh)”ithja

TeTy FeFu(T)
Each of the terms can be bounded by

Heg(Mh)Hih,T S |70T(9£(Mh))‘%/2,h,6T > norm eq. and lifting
S |9£(2h(T) —ar) ?/2,h,5T + |9£(2h(T/) - aF)ﬁ/Q,h,aT

where we have added and substracted a constant ar € R.



Proof: Spectral equivalence (I1V)

Since v, € H,, we can choose ay = Ap(v,(T)) = Ap(v,(T")) so that

f 7 (0a(T) — ar) = j 7 (up(T) — ap) = 0
F

F

Then

=[x

2
ngic(wh)\\i\ﬂ = <1 + In ) (‘Qh(T)ﬁ,h,T + ‘Qh(T/)E,h,T’) > truncation

H 2
<(1+m7) (2@Pur + @), r) 5 nom e

and finally

H 2
b, 5 (14T ) s,
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3. Numerical results



Problem setup

We solve the Poisson problem with Dirichlet bcs on © = [0, 1]2
—Au=f inQ, wu=g onoQ

We use N, x N, simplexified cartesian meshes, and their Voronoi
counterparts, partitioned into IV, x N,, processors.

Figure 1: Left: simplexified mesh. Right: Voronoi mesh. Distributed amongst
N, = 6 processors, with colors mapping to the processor id.



Problem setup

We test our preconditioner for several popular schemes in the literature:
e Hybrid High-Order (HHO)'
o Mixed-order HHO?
 Hybridazable Discontinuous Galerkin (HDG)3*

"Daniele A. Di Pietro and Alexandre Ern. “A hybrid high-order locking-free method for linear elasticity on
general meshes”. In: Computer Methods in Applied Mechanics and Engineering 283 (2015), pp. 1-21.
DOI: https://doi.org/10.1016/j.cma.2014.09.009.
2Matteo Cicuttin, Alexandre Ern, and Nicolas Pignet. Hybrid High-Order Methods: A Primer with
Applications to Solid Mechanics. Mathematical Engineering. Springer International Publishing, 2021.
DOI: 10.1007/978-3-030-81477-9.
3Bernardo Cockburn, Jayadeep Gopalakrishnan, and Raytcho Lazarov. “Unified Hybridization of
Discontinuous Galerkin, Mixed, and Continuous Galerkin Methods for Second Order Elliptic Problems”.
In: SIAM Journal on Numerical Analysis (2009). DOI: 10.1137/070706616.
4Shukai Du and Francisco—Javier Sayas. “A note on devising HDG+ projections on polyhedral
elements”. In: arXiv: Numerical Analysis (2020). DOI: 10.1090/mcom/3573.


https://doi.org/https://doi.org/10.1016/j.cma.2014.09.009
https://doi.org/10.1007/978-3-030-81477-9
https://doi.org/10.1137/070706616
https://doi.org/10.1090/mcom/3573

chmarks

Implementation Julia, using the Gridap' ecosystem. MPI support through
GridapDistributed.jl and PartitionedArrays.jl>. Solvers implemented in
GridapSolvers.jl3.

We perform weak scalability tests, that is
e constant local problem size, N./N, ~ H/h
e increasing N, up to 768 processors
All experiments are run on the Gadi supercomputer at NCI.

Santiago Badia and Francesc Verdugo. “Gridap: An extensible Finite Element toolbox in Julia”. In:
Journal of Open Source Software 5.52 (2020), p. 2520. DOI: 10.21105/joss.02520.

2Santiago Badia, Alberto F. Martin, and Francesc Verdugo. “GridapDistributed: a massively parallel
finite element toolbox in Julia”. In: Journal of Open Source Software 7.74 (2022), p. 4157. DOI:
10.21105/joss.04157.

3Jordi Manyer, Alberto F. Martin, and Santiago Badia. “GridapSolvers.jl: Scalable multiphysics finite
element solvers in Julia”. In: Journal of Open Source Software 9.102 (2024), p. 7162. DOI:
10.21105/joss.07162.


https://doi.org/10.21105/joss.02520
https://doi.org/10.21105/joss.04157
https://doi.org/10.21105/joss.07162

Results ()
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Figure 2: Number of CG iterations, as a function of the number of processors.
Cases: HDG with H/h = 8 (left) and H/h = 16 (right).



Results (Il)

HHO of structured meshes
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Figure 3: Number of CG iterations, as a function of the number of processors.
Cases: HHO with H/h = 8 (left) and H /h = 16 (right).
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Results (lll)

Mixed-order HHO of structured meshes
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Figure 4: Number of CG iterations, as a function of the number of processors.
Cases: Mixed-order HHO with H /h = 8 (left) and H/h = 16 (right).
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Results (1V)

HDG+ of voronoi meshes
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Figure 5: Number of CG iterations, as a function of the number of processors.
Cases: HDG+ with H/h = 8 (left) and H/h = 16 (right).
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Results (V)

HHO of voronoi meshes
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Figure 6: Number of CG iterations, as a function of the number of processors.
Cases: HHO with H/h = 8 (left) and H /h = 16 (right).
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Results (VI)

Mixed-order HHO of voronoi meshes
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Figure 7: Number of CG iterations, as a function of the number of processors.
Cases: Mixed-order HHO with H /h = 8 (left) and H/h = 16 (right).
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Results 3D (I)

HDG of 3D structured meshes
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Figure 8: Number of CG iterations, as a function of the number of processors.
Cases: HDG with H/h = 4 (left) and H /h = 8 (right).
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Results 3D ()

Mixed-order HHO of 3D structured meshes
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Figure 9: Number of CG iterations, as a function of the number of processors.
Cases: Mixed-order HHO with H/h = 4 (left) and H/h = 8 (right).
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Thank you!

S. Badia, J. Droniou, J. Manyer, J. Tushar, “Analysis of BDDC preconditioners for
non-conforming polytopal hybrid discretisation methods”, preprint available.

S. Badia, J. Droniou, J. Tushar, “A discrete trace theory for non-conforming polytopal hybrid
discretisation methods.”, preprint available.

J. Manyer, A. Martin, S. Badia “GridapSolvers: Scalable multiphysics finite element solvers
in Julia“, Journal of Open Source Software, 2024.

> Get slides for Part | and Part Il of this talk.

Computational resources for this work were provided by NCI through the
NCMAS public scheme and the Monash-NClI partnership.

AUSTRALIA
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References i

[1] Santiago Badia, Jerome Droniou, Jordi Manyer, and Jai Tushar.
Analysis of BDDC preconditioners for non-conforming polytopal
hybrid discretisation methods. 2025. arXiv: 2506.11956 [math.NA].

[2] Santiago Badia, Jérome Droniou, and Jai Tushar. A discrete trace
theory for non-conforming polytopal hybrid discretisation methods.
2024. arXiv: 2409.15863 [math.NA].

[8] Santiago Badia, Alberto F. Martin, and Javier Principe. “A Highly
Scalable Parallel Implementation of Balancing Domain
Decomposition by Constraints”. In: SIAM Journal on Scientific
Computing 36.2 (2014), pp. C190—-C218. DOI: 10.1137/130931989.
eprint: https://doi.org/10.1137/130931989.

[4] Santiago Badia, Alberto F. Martin, and Francesc Verdugo.
“GridapDistributed: a massively parallel finite element toolbox in
Julia”. In: Journal of Open Source Software 7.74 (2022), p. 4157.
DOI: 10.21105/joss.04157.

28


https://arxiv.org/abs/2506.11956
https://arxiv.org/abs/2409.15863
https://doi.org/10.1137/130931989
https://doi.org/10.1137/130931989
https://doi.org/10.21105/joss.04157

References ii

(5]

(6]

[7]

(8]

Santiago Badia and Francesc Verdugo. “Gridap: An extensible
Finite Element toolbox in Julia”. In: Journal of Open Source
Software 5.52 (2020), p. 2520. DOI: 10.21105/joss . 02520.

Matteo Cicuttin, Alexandre Ern, and Nicolas Pignet. Hybrid
High-Order Methods: A Primer with Applications to Solid
Mechanics. Mathematical Engineering. Springer International
Publishing, 2021. DOI: 10.1007/978-3-030-81477-9

Bernardo Cockburn, Jayadeep Gopalakrishnan, and

Raytcho Lazarov. “Unified Hybridization of Discontinuous Galerkin,
Mixed, and Continuous Galerkin Methods for Second Order Elliptic
Problems”. In: SIAM Journal on Numerical Analysis (2009). DOI:
10.1137/070706616.

Daniele A. Di Pietro and Alexandre Ern. “A hybrid high-order
locking-free method for linear elasticity on general meshes”. In:
Computer Methods in Applied Mechanics and Engineering 283
(2015), pp. 1—21. DOI:
https://doi.org/10.1016/j.cma.2014.09.009.

29


https://doi.org/10.21105/joss.02520
https://doi.org/10.1007/978-3-030-81477-9
https://doi.org/10.1137/070706616
https://doi.org/https://doi.org/10.1016/j.cma.2014.09.009

References iii

[9] Shukai Du and Francisco—Javier Sayas. “A note on devising HDG+
projections on polyhedral elements”. In: arXiv: Numerical Analysis
(2020). DOI: 10.1090/mcom/3573.

[10] Jan Mandel and Clark R. Dohrmann. “Convergence of a balancing
domain decomposition by constraints and energy minimization”. In:
vol. 10. 7. Dedicated to the 70th birthday of lvo Marek. 2003,
pp. 639-659. DOI: 10.1002/nla.341.

[11] Jan Mandel, Bedfich Sousedik, and Clark R. Dohrmann.
“Multispace and multilevel BDDC”. In: Computing 83.2—3 (Sept.
2008), pp. 55-85. DOI: 10.1007/s00607-008-0014-7.

[12] Jordi Manyer, Alberto F. Martin, and Santiago Badia.
“GridapSolvers.jl: Scalable multiphysics finite element solvers in
Julia”. In: Journal of Open Source Software 9.102 (2024), p. 7162.
DOI: 10.21105/joss.07162.

30


https://doi.org/10.1090/mcom/3573
https://doi.org/10.1002/nla.341
https://doi.org/10.1007/s00607-008-0014-7
https://doi.org/10.21105/joss.07162

References iv

[13] Daniele Antonio Di Pietro and Jérome Droniou. The Hybrid
High-Order Method for Polytopal Meshes: Design, Analysis, and
Applications. Vol. 19. MS&A. Springer, 2020. DOI:
10.1007/978-3-030-37203-3.

31


https://doi.org/10.1007/978-3-030-37203-3

Appendix A - Implementation details for BDDC (1)

Our preconditioner is given by
23 T—1A~T -1 4T
Bh = QhAh Qh + IOAh’OI()
Given a residual 7, it returns a correction z;, = 2, + 21,0 given by
~ T—1 ~ —1 ~
Zh = Qn A QL L, 2no = IO-AhpIOTTh

We can further split the problem by considering U, = 17;,,70 @ Uy, where
o ﬁh,o is the subset of Qh with zero coarse DoF values.

e Uy, is the complementary, i.e the subset of U,, with at least one
non-zero coarse DoF value.

We can write Zj, = Qp,(Zh.0 + Zn.c) With

~ =1l ~ =il T~
Zho =ApoTh s Zhe=Aphns Th=QuTh
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Appendix A - Implementation details for BDDC (ll)

Let A be the matrix representation of A;,, i.e the sub-assembled system
matrix. We have that

o A is block-diagonal, with blocks A* corresponding to subdomains.
e Each block A* can be locally split into interior/interface blocks, i.e
Ak _ |: I1I IF]
Afp Afp
Also:

e Let C* be the matrix representation of the coarse constraints, local
to each processor.

e Let Ry = diag(R%) and Rr = diag(Rk) be the interior and interface
restrictions, respectively.

e Let W be the matrix representation of 1.
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Appendix A - Implementation details for BDDC (lll)

Interior correction

e The block-diagonal matrix A;; = diag(A¥,) is the matrix
representation of Ay, .

e The block-diagonal matrix R; = diag(R¥%) is the matrix
representation of 77"

Then if we take z, 7 the vector representations of z;, o, 7, respectively, we
have

zo = RT A7 Ri7

which can be solved locally on each processor.

34



Appendix A - Implementation details for BDDC (1V)

Fine correction

The fine correction
~ T-1
Zh,0 = Ah"orh

can be computed locally by solving

k k ~k k
WAl emr | [ L
Ar;  Arp (CF) “|2or| = [Tr

CcFk bl 0

where Zy, r the vector representations of zj, o, 7, respectively, and

- F= [4-F
el TLRE R k] T A
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Appendix A - Implementation details for BDDC (V)

Coarse correction

We have ﬁ;w = span{¢,}rca, Where ¢, is the global basis function that
is one on A and zero on all other coarse degrees of freedom. Denote by
® the matrix that has columns ¢,.

We can compute @, by solving the local problems

A Ay eyl [0
Af; Afp (COT|-|er| =0
C* AP Iy

The matrix representation of ﬂ;w is then given by

A7t —as7teT | 5. = Zsk Z (@F)T A+ @k
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Appendix A - Implementation details for BDDC (VI)

Coarse correction'

Qenerally, S, is assembled into a g P conrsegrd P!
single processor and factorized. The opmne copmunieator
coarse correction then involves:

1. gathering the local coarse
residuals r* = (®*)Tr* into a
single processor,

2. solving the coarse problem, and

3. scattering the result back to

OpenMP-based coarse-grid

each processor and doing a sowten
linear combination with the Figure 10: Processor layout for
basis, to obtain z*. computing BDDC corrections.

Santiago Badia, Alberto F. Martin, and Javier Principe. “A Highly Scalable Parallel Implementation of
Balancing Domain Decomposition by Constraints”. In: SIAM Journal on Scientific Computing 36.2

(2014), pp. C190-C218. DOI: 10.1137/130931989. eprint: https://doi.org/10.1137/130931989.
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Appendix B - HHO formulation for the Poisson problem (l)'2

Given a polynomial order k, we consider the local and global HHO

spaces

Ql’;“ = {(UT7 (UF)FE}-T) Sur € Pk(T)’ VF € Pk(F) VE' e ]:T}
Uy, = {((vr)rem, (VF)Fer,) : vr € PX(T) VT € Ty, vp € PH(F) VF € F}

"Daniele Antonio Di Pietro and Jéréme Droniou. The Hybrid High-Order Method for Polytopal Meshes:

Design, Analysis, and Applications. Vol. 19. MS&A. Springer, 2020. DOI: 10.1007/978-3-030-37203-3
2Matteo Cicuttin, Alexandre Ern, and Nicolas Pignet. Hybrid High-Order Methods: A Primer with

Applications to Solid Mechanics. Mathematical Engineering. Springer International Publishing, 2021.

DOI: 10.1007/978-3-030-81477-9.

38


https://doi.org/10.1007/978-3-030-37203-3
https://doi.org/10.1007/978-3-030-81477-9

Appendix B - HHO formulation for the Poisson problem (ll)

Potential reconstruction operator
We define Ry, - UE — PF+1(T) such that Vw e PF+1(T) we have

(VRI%JAQT, VU})T = (VUT7 Vw)T aF Z (UF — vy, Vw - nTF)F
FE]‘—T

(RI’;“+IQT7 w)T = (UT7 w)T
Difference operators

We define dkuy : US — P*(T) and 6kup : US — PF(F) as

k k ( pk+1 k k ( pk+1
opvy = mp(Ry" vy —vr),  O7pur = 7p(Ry vr — vF)
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Appendix B - HHO formulation for the Poisson problem (lll)

The global problem is then given by: Find w, € U,, , such that Vv, € U}, ,

ap(ur,vy) = bn(vr)

with

an(ur,vy) = Z ar(up,vr), bn(vr) = Z (fsor)r

TeTh TeTh
and where the local contributions are given by
ar(ugp, vy) = (VRkHUp VR§+1QT)T + sT(ur,vr)

U’T’ ’UT Z h 6TF - 5];“) QTH (5]’]C“F - 65&) QT:I
FeFr
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