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Motivation

Polytopal methods

• Increasingly popular choice for dealing with complex geometries.

• Often non-conforming and hybrid in nature (HHO, HDG,
non-conforming VEM, ...).

• Efficient solvers for the resulting large sparse linear systems are
needed.

Balancing domain decomposition by constraints (BDDC)

• Popular family of robust and scalable preconditioners.

• Traditional robustness proofs rely on continuous trace and lifting
inquequalities, which are not available for non-conforming methods.
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Hybrid spaces

We consider the hybrid space Uh “ Uh ˆ UB
h , where

Uh
.
“

ą

tPTh

Pkptq, UB
h

.
“

ą

fPFh

Pkpfq, UB,bd
h

.
“

ą

fPFbd
h

Pkpfq

For each vh “ ppvtqtPTh
, pvf qfPFt

q P Uh we define the discrete
H1pΩq-seminorm

|vh|1,h
.
“

˜

ÿ

tPTh

|vh|21,t

¸1{2

|vh|21,t
.
“ }∇vt}

2
L2ptq `

ÿ

fPFt

h´1
t }vf ´ vt}

2
L2pfq.
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Discrete trace theory (I) 1

We define the discrete H1{2pBΩq-seminorm

|wh|21{2,h
.
“

ÿ

fPFbd
h

h´1
f }wf ´wf }2L2pfq `

ÿ

pf,f 1qPFFbd
h

|f |d´1|f 1|d´1
|wf ´ wf 1 |2

|xf ´ xf 1 |d
,

Theorem: Trace inequality

|γpvhq|1{2,h À |vh|1,h @vh P Uh

Theorem: Lifting inequality

There exists a lifting Lh : UB,bd
h Ñ Uh such that

|Lhpwhq|1,h À |wh|1{2,h @wh P UB,bd
h

1S. Badia, J. Droniou, J. Tushar, “A discrete trace theory for non-conforming polytopal hybrid

discretisation methods.”, submitted.
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Discrete trace theory (II)

Theorem: Truncation estimate
Consider Γ “

Ť

fPFhpΓq clpfq Ă BΩ and vh P Uh such that

ż

Γ

γpvhq “ 0

Define wh P UB,bd
h as

@f P Fbd
h wf “

#

vf if f P FhpΓq,

0 if f R FhpΓq.

Then, under regularity assumptions for Γ, we have

|wh|1{2,h À

ˆ

1 ` ln

ˆ

diampΩq

h

˙˙

|vh|1,h,
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Domains and meshes

Fine mesh: For a domain Ω with boundary BΩ, we consider

• A partition Th of Ω into polytopes t.
• Its skeleton Fh “ Fbd

h Y F in
h with faces f .

• For each t P Th, we denote by Fhptq the subset of its faces.

Coarse mesh: we consider an agglomeration pTH ,FHq s.t.

• Each subdomain T P TH is a union of polytopes t P ThpT q.
• Each coarse face F P FH is a union of faces f P FhpF q.
• For each T P TH , we denote by FHpT q the subset of its macro-faces.

T1 T2

t1

t2

t3

t4

t5

t6

t7

t8
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Sub-assembled spaces

We consider our fine mesh and it’s coarse counterpart, pTh,Fhq and
pTH ,FHq respectively.

• Original space - Continuous accross interfaces

pUh “ Uh ˆ pUB
h

• Sub-assembled space - Discontinuous accross interfaces

Uh “
ą

TPTH

pUhpT q » Uh ˆ UB
h , UB

h “
ą

TPTH

pUB
hpT q

• Bubble spaces - Zero on coarse faces

Uh,0 “ Uh ˆ UB
h,0
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Coarse constraints

We define for each coarse face F P FH a set of functionals

ΛF “
␣

λi
F : UB

hpF q Ñ R
(

i“1:nF
c

Λ “
ď

FPFH

ΛF

In our case, we will take averages on coarse faces, i.e

λF pvhq “
1

|F |

ż

F

γpvhq

We can then define the BDDC space as the space of functions that are
discontinous accross interfaces, but with continuous coarse degrees of
freedom (DoFs).

rUh “ Uh ˆ rUB
h

in particular, we have

λF pvhpT qq “ λF pvhpT 1qq for T, T 1 neighbors of F.
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Abstract problem formulation

We consider A a coercive differential operator on Ω, and l a linear
functional. We assume homogeneous Dirichlet boundary conditions.

Continuous problem: Find u P U such that for all v P U0 we have

xAu, vy “ xl, vy

We define:

• Ah the discrete approximation of A on Uh.

• pAh the restriction of Ah on pUh.

• rAh the restriction of Ah on rUh.

• Ah,0 the restriction of Ah on Uh,0.

Discrete problem: Find uh P pUh such that for all vh P pUh,0 we have

x pAhuh, vhy “ xlh, vhy
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Discrete harmonic spaces

Define the discrete harmonic space Hh as

Hh KAh
Uh,0

Define the harmonic extension operator Eh : Uh Ñ Hh such that given
wh P Uh, we have

xAhEhwh, vhy “ 0 @vh P Uh,0

Ehwh “ wh on FH

and it’s restriction xEh to pUh.

• Functions in Hh are fully determined by their values on the interface.

• Interior DoFs are obtained by solving local problems with Dirichlet
BCs given by the interface DoFs.

• Eh is the minimum energy lifting w.r.t Ah.
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Weighting operator

Define the weighting operator Wh : Uh Ñ pUh such that

• WhIh is the identity on Uh (interior DoFs)

• WhIh is a projection on pUB
h (interface DoFs)

where Ih : pUh Ñ Uh is the natural injection.

In our case, we choose the weighted average

pWhuhq|F “
1

2

`

uhpT q|F ` uhpT 1q|F
˘

@F P FH

where T and T 1 are the two subdomains sharing the face F .
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Preconditioner

We define the BDDC preconditioner pBh : pU
˚

h Ñ pUh as

pBh “ Qh
rA´1
h QT

h ` I0A´1
h,0I

T
0

with Qh “ xEhWh : rUh Ñ pHh and I0 : Uh,0 Ñ pUh the natural injection.

Theorem: Spectral equivalence
Under the assumption that || ¨ ||

rAh
» || ¨ ||1,h

κ
´

pBh
pAh

¯

À

ˆ

1 ` ln
H

h

˙2

where the hidden constant does not depend on H, h and the number of
subdomains.
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Proof: Spectral equivalence (I)

From abstract aditive Schwartz theory 1 , we have

κ
´

pBh
pAh

¯

ď max

#

1, sup
vhP rUh

}Qhvh}2
rAh

}vh}2
rAh

+

ď max

#

1, 1 ` sup
vhPĂHh

}Qhvh ´ vh}2
rAh

}vh}2
rAh

+

.

Let wh “ Qhvh ´ vh.

1J. Mandel, B. Sousedı́k and C. R. Dohrmann, Multispace and multilevel BDDC, Springer (2008)
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Proof: Spectral equivalence (II)

We define the face restriction operators θTF which takes a function vh and

1. Restrict a function to the macro face F .
2. Extends it by zero to BT

3. Extends it harmonically to T

T T 1F

vhpT q

θTF pvhpT qq

Corollary: Truncation estimate

Let F P FHpT q and vh P Uh which satisfies
ş

F
γpvhq “ 0. Then following

estimate holds:

|γpθTF pvhqq|21{2,h À p1 ` lnpH{hqq2|vh|21,h.
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Proof: Spectral equivalence (III)

One can see that for wh “ Qhvh ´ vh we have

whpT q “
ÿ

FPFHpT q

θTF pwhq , θTF pwhq “
1

2

“

θTF pvhpT 1qq ´ θTF pvhpT qq
‰

Then using the above and triangle inequalities, we get

}Qhvh ´ vh}2
rAh

À
ÿ

TPTH

ÿ

FPFHpT q

x rAhθ
T
F pwhq, θTF pwhqy,

Each of the terms can be bounded by

x rAhθ
T
F pwhq, θTF pwhqy À }θTF pvhpT q ´ αF q}2

rAh,T
` }θTF pvhpT 1q ´ αF q}2

rAh,T

where we have added and substracted a constant αF P R.
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Proof: Spectral equivalence (IV)

Since vh P ĂHh, we can choose αF “ λF pvhpT qq “ λF pvhpT 1qq so that
ż

F

γ
`

vhpT 1q ´ αF

˘

“ 0

Then

}θTF pvhpT 1q ´ αF q}2
rAh,T

À }θTF pvhpT 1q ´ αF q}21,h ▷ norm eq.

À |vhpT 1q|F |21{2,h ▷ lifting

À p1 ` lnpH{hqq2}vhpT 1q}21,h ▷ truncation

À p1 ` lnpH{hqq2}vhpT 1q}2
rAh,T 1 ▷ norm eq.
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Problem setup

We solve the Poisson problem with Dirichlet bcs on Ω “ r0, 1s2

´∆u “ f in Ω, u “ g on BΩ

We use Nc ˆ Nc simplexified cartesian meshes, and their Voronoi
counterparts, partitioned into Np ˆ Np processors.

Figure 1: Left: simplexified mesh. Right: Voronoi mesh. Distributed amongst
Np “ 6 processors, with colors mapping to the processor id.
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Problem setup

We test our preconditioner for several popular schemes in the literature:

• Hybrid High-Order (HHO) 1

• Mixed-order HHO 2

• Hybridazable Discontinuous Galerkin (HDG) 3,4

1D. A. Di Pietro and A. Ern, A hybrid high-order locking-free method for linear elasticity on general

meshes, CMAME (2015)
2M. Cicuttin, A. Ern and N. Pigneo, Hybrid High-Order Methods: A Primer with Applications to Solid

Mechanics, Springer (2021)
3B. Cockburn, J. Gopalakrishnan and R. Lazarov, Unified Hybridization of Discontinuous Galerkin,

Mixed, and Continuous Galerkin Methods for Second Order Elliptic Problems, SIAM-NA (2009)
4S. Du and F. Sayas, A note on devising HDG+ projections on polyhedral elements, arXiv (2020)

17/39



Benchmarks

Implementation Julia, using the Gridap1 ecosystem. MPI support through
GridapDistributed.jl and PartitionedArrays.jl 2. Solvers implemented in
GridapSolvers.jl3.

We perform weak scalability tests, that is

• constant local problem size, Nc{Np „ H{h

• increasing Np up to 768 processors

All experiments are run on the Gadi supercomputer at NCI.

1S. Badia and F. Verdugo, Gridap: An extensible Finite Element toolbox in Julia, JOSS (2020)
2S. Badia and A. F. Martı́n and F. Verdugo, GridapDistributed: a massively parallel finite element toolbox

in Julia, JOSS (2022)
3J. Manyer and A. F. Martı́n and S. Badia, GridapSolvers.jl: Scalable multiphysics finite element solvers

in Julia, JOSS (2024)
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Results (I)
HDG of structured meshes

Figure 2: Number of CG iterations, as a function of the number of processors.
Cases: HDG with H{h = 8 (left) and H{h = 16 (right).
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Results (II)
HHO of structured meshes

Figure 3: Number of CG iterations, as a function of the number of processors.
Cases: HHO with H{h = 8 (left) and H{h = 16 (right).
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Results (III)
Mixed-order HHO of structured meshes

Figure 4: Number of CG iterations, as a function of the number of processors.
Cases: Mixed-order HHO with H{h = 8 (left) and H{h = 16 (right).
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Results (IV)
HDG+ of voronoi meshes

Figure 5: Number of CG iterations, as a function of the number of processors.
Cases: HDG+ with H{h = 8 (left) and H{h = 16 (right).
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Results (V)
HHO of voronoi meshes

Figure 6: Number of CG iterations, as a function of the number of processors.
Cases: HHO with H{h = 8 (left) and H{h = 16 (right).
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Results (VI)
Mixed-order HHO of voronoi meshes

Figure 7: Number of CG iterations, as a function of the number of processors.
Cases: Mixed-order HHO with H{h = 8 (left) and H{h = 16 (right).
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Thank you!

S. Badia, J. Droniou, J. Manyer, J. Tushar, “Balancing domain decomposition by constraints
preconditioners for non-conforming hybrid discretisation methods”, in preparation.

S. Badia, J. Droniou, J. Tushar, “A discrete trace theory for non-conforming polytopal hybrid
discretisation methods.”, submitted.

J. Manyer, A. Martin, S. Badia “GridapSolvers: Scalable multiphysics finite element solvers
in Julia“, Journal of Open Source Software, 2024.

Computational resources for this work were provided by NCI through the
NCMAS public scheme and the Monash-NCI partnership.
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Appendix A - Implementation details for BDDC (I)

Our preconditioner is given by

pBh “ Qh
rA´1
h QT

h ` I0A´1
h,0I

T
0

Given a residual prh, it returns a correction pzh “ rzh ` zh,0 given by

rzh “ Qh
rA´1
h QT

h prh , zh,0 “ I0A´1
h,0I

T
0 prh

We can further split the problem by considering rUh “ rUh,0

À

rUh,c where

• rUh,0 is the subset of rUh with zero coarse DoF values.

• rUh,c is the complementary, i.e the subset of rUh with at least one
non-zero coarse DoF value.

We can write rzh “ Qhprzh,0 ` rzh,cq with

rzh,0 “ rA´1
h,0rh , rzh,c “ rA´1

h,crh , rh “ QT
h prh
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Appendix A - Implementation details for BDDC (II)

Let A be the matrix representation of Ah, i.e the sub-assembled system
matrix. We have that

• A is block-diagonal, with blocks Ak corresponding to subdomains.

• Each block Ak can be locally split into interior/interface blocks, i.e

Ak “

«

Ak
II Ak

IΓ

Ak
ΓI Ak

ΓΓ

ff

Also:

• Let Ck be the matrix representation of the coarse constraints, local
to each processor.

• Let RI “ diagpRk
I q and RΓ “ diagpRk

Γq be the interior and interface
restrictions, respectively.

• Let W be the matrix representation of Wh.
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Appendix A - Implementation details for BDDC (III)
Interior correction

• The block-diagonal matrix AII “ diagpAk
IIq is the matrix

representation of Ah,0.

• The block-diagonal matrix RI “ diagpRk
I q is the matrix

representation of IT0 .

Then if we take z0, pr the vector representations of zh,0, prh respectively, we
have

z0 “ RT
I A

´1
II RIpr

which can be solved locally on each processor.

33/39



Appendix A - Implementation details for BDDC (IV)
Fine correction

The fine correction
rzh,0 “ rA´1

h,0rh

can be computed locally by solving
»

—

–

Ak
II Ak

IΓ

Ak
ΓI Ak

ΓΓ pCkqT

Ck

fi

ffi

fl

¨

»

—

–

rzk0,I
rzk0,Γ
λk

fi

ffi

fl

“

»

—

–

rkI
rkΓ
0

fi

ffi

fl

where rz0, r the vector representations of rzh,0, rh respectively, and
«

rzk0,I
rzk0,Γ

ff

“

«

Rk
I

Rk
Γ

ff

¨ rzk0 ,

«

rkI
rkΓ

ff

“

«

Rk
I

Rk
Γ

ff

¨ rk
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Appendix A - Implementation details for BDDC (V)
Coarse correction

We have rUh,c “ spantϕλuλPΛ, where ϕλ is the global basis function that
is one on λ and zero on all other coarse degrees of freedom. Denote by
Φ the matrix that has columns ϕλ.

We can compute Φk, by solving the local problems
»

—

–

Ak
II Ak

IΓ

Ak
ΓI Ak

ΓΓ pCkqT

Ck

fi

ffi

fl

¨

»

—

–

Φk
I

Φk
Γ

λk

fi

ffi

fl

“

»

—

–

0

0

Id

fi

ffi

fl

The matrix representation of rAh,c is then given by

rA´1
c “ ΦS´1

c ΦT , Sc “
ÿ

k

Sk
c “

ÿ

k

pΦkqTAkΦk
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Appendix A - Implementation details for BDDC (VI)
Coarse correction1

Generally, Sc is assembled into a
single processor and factorized. The
coarse correction then involves:

1. gathering the local coarse
residuals rkc “ pΦkqT rk into a
single processor,

2. solving the coarse problem, and

3. scattering the result back to
each processor and doing a
linear combination with the
basis, to obtain rzkc .

Figure 8: Processor layout for
computing BDDC corrections.

1S. Badia and A. F. Martı́n and J. Principe, A Highly Scalable Parallel Implementation of Balancing

Domain Decomposition by Constraints, SIAM J. Sci. Comput. (2014).
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Appendix B - HHO formulation for the Poisson problem (I) 1 2

Given a polynomial order k, we consider the local and global HHO
spaces

Uk
T “

␣

pvT , pvF qFPFT
q : vT P PkpT q, vF P PkpF q @F P FT

(

Uh “
␣

ppvT qTPTh
, pvF qFPFh

q : vT P PkpT q @T P Th, vF P PkpF q @F P Fh

(

1D. Di Pietro and J. Droniou, The Hybrid High-Order Method for Polytopal Meshes: Design, Analysis,

and Applications, Springer, 2020.
2M. Cicuttin, A. Ern and N. Pignet, Hybrid High-Order Methods: A Primer with Applications to Solid

Mechanics, Springer, 2021.
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Appendix B - HHO formulation for the Poisson problem (II)

Potential reconstruction operator

We define Rk`1
T vT : Uk

T Ñ Pk`1pT q such that @w P Pk`1pT q we have

`

∇Rk`1
T vT ,∇w

˘

T
“ p∇vT ,∇wqT `

ÿ

FPFT

pvF ´ vT ,∇w ¨ nTF qF

`

Rk`1
T vT , w

˘

T
“ pvT , wqT

Difference operators

We define δkT vT : Uk
T Ñ PkpT q and δkF vF : Uk

T Ñ PkpF q as

δkT vT “ πk
T pRk`1

T vT ´ vT q , δkTF vT “ πk
F pRk`1

T vT ´ vF q
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Appendix B - HHO formulation for the Poisson problem (III)

The global problem is then given by: Find uh P Uh,0 such that @vh P Uh,0

ahpuT , vT q “ bhpvT q

with

ahpuT , vT q “
ÿ

TPTh

aT puT , vT q , bhpvT q “
ÿ

TPTh

pf, vT qT ,

and where the local contributions are given by

aT puT , vT q “
`

∇Rk`1
T uT ,∇Rk`1

T vT
˘

T
` sT puT , vT q

sT puT , vT q “
ÿ

FPFT

h´1
F

“`

δkTF ´ δkT
˘

uT ,
`

δkTF ´ δkT
˘

vT
‰
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