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Polytopal methods

* Increasingly popular choice for dealing with complex geometries.

» Often non-conforming and hybrid in nature (HHO, HDG,
non-conforming VEM, ...).

« Efficient solvers for the resulting large sparse linear systems are
needed.

Balancing domain decomposition by constraints (BDDC)

» Popular family of robust and scalable preconditioners.

« Traditional robustness proofs rely on continuous trace and lifting
inquequalities, which are not available for non-conforming methods.
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Hybrid spaces

We consider the hybrid space U, = U}, x U,; where

Up = X Pipt), U= X Pu(f), U= X Pi(f)

teTh JE€Fn feFre

For each v;, = ((v¢)ieTs,, (vf)ser,) € U;, We define the discrete

H(©)-seminorm
1/2
Lh = (Z |vh|it>
teTh

loald s = 1Voel 220 + Z hi Hog = vell Zapy-
feF

k=0 k=1 k=2

|Qh
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Discrete trace theory (I)

We define the discrete H'/?(0Q)-seminorm
[wy —wp|?

walfon = D) Brtlwr—Wsliany+ D, flacalfla | T

i
feFpe (F.4)eFFy i

Theorem: Trace inequality

Iy(wn)l1/2,n < [wal1,n Vv, €U,

Theorem: Lifting inequality

There exists a lifting £, : U"! — U, such that

1Lh(wp)in < [wlyjen  Ywp € U

'S. Badia, J. Droniou, J. Tushar, “A discrete trace theory for non-conforming polytopal hybrid

discretisation methods.”, submitted.
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Discrete trace theory (ll)

Theorem: Truncation estimate
Consider I' = £, (r) cl(f) = 0© and v, € U, such that

[RER

Define wy, € U as

vy if f € ]:h(F),

bd o
vie Rt = {o it f¢ Fn(D).

Then, under regularity assumptions for ", we have

di Q
[whlij2,n < (1 + In (mr;z())) |[upl1,hs
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Domains and meshes

Fine mesh: For a domain €2 with boundary 0S2, we consider

A partition 7, of 2 into polytopes ¢.
* Its skeleton F,, = 74 U Fi» with faces f.
» For each t € T}, we denote by F;,(t) the subset of its faces.

Coarse mesh: we consider an agglomeration (7, Fyr) s.t.

« Each subdomain 7' € Ty is a union of polytopes t € 7, (T).
» Each coarse face F' € Fy is a union of faces f € F,(F).
» For each T € Ty, we denote by Fp (T') the subset of its macro-faces.

t1 t3 ts tr

e\ )\
E A E Ay

ta ty te ts
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Sub-assembled spaces

We consider our fine mesh and it's coarse counterpart, (7, F5) and
(Tu, Fr) respectively.

« Original space - Continuous accross interfaces
Qh = Uh X U}f
» Sub-assembled space - Discontinuous accross interfaces

Uy= X U,@=~UxUZ, U= X UYT)
TETH TETH

» Bubble spaces - Zero on coarse faces

2
Upo=UnxUp,
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Coarse constraints

We define for each coarse face F € Fg a set of functionals

Ap={p UF) -RY,_, . A= | Ar
FeFy

In our case, we will take averages on coarse faces, i.e

allen) = ﬁ L Y(wp)

We can then define the BDDC space as the space of functions that are
discontinous accross interfaces, but with continuous coarse degrees of

freedom (DoFs).
U, =U,xU;

in particular, we have

Ar (v, (T)) = Ap(v,(T")) for T, T neighbors of F.
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Abstract problem formulation

We consider A a coercive differential operator on 2, and [ a linear
functional. We assume homogeneous Dirichlet boundary conditions.

Continuous problem: Find u € U such that for all v € Uy we have
(Au, vy = {,v)
We define:

» Ay, the discrete approximation of A on U,,.
. flh the restriction of A;, on Qh.

« Ay, the restriction of Aj, on U,

* Ay the restriction of Ay on Uy, ;.

Discrete problem: Find u,, € U, such that for all v,, € U}, o we have

<A\h@hvyh> =, vp)
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Discrete harmonic spaces

Define the discrete harmonic space H, as
ﬂh J‘-Ah, Qh,O

Define the harmonic extension operator &, : U;,, — H,, such that given
w,, € U, we have

(ArEpwy, vy =0 Yy, €Uy,

ghwh :wh on fH

and it's restriction &, to U,
* Functions in H,, are fully determined by their values on the interface.

« Interior DoFs are obtained by solving local problems with Dirichlet
BCs given by the interface DoFs.

o &, is the minimum energy lifting w.r.t Ap,.
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Weighting operator

Define the weighting operator W), : U, — U, such that

o Wy} is the identity on Uy, (interior DoFs)
* Wy 1}, is a projection on ﬁ,f (interface DoFs)

where I, : U, — U, is the natural injection.

In our case, we choose the weighted average

(un(D)|r + up(T')|r) VF € Fu

1
(Whay,)|F = 5

where T and T” are the two subdomains sharing the face F.
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Preconditioner

We define the BDDC preconditioner B, : Q: — Q,L as
B, = Qh;l;ng + IOA,:})IE

with Q;, = &,W), : U, — H,, and I, : U, , — U, the natural injection.

Theorem: Spectral equivalence
Under the assumption that |[ - || . =~ [[ - [[1,»

K (B\h./zt\h) < (1 + In 1;[)2

where the hidden constant does not depend on H, h and the number of
subdomains.
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Proof: Spectral equivalence (I)

From abstract aditive Schwartz theory ' , we have

- |Qnun
K (B;LA;L) <max{ 1, sup ——"
S0 T,
H thh - Q}LHZT
<max<{ 1,1+ sup ———=*

v, EE;L Hyh,

2
7

Let Wy = Qth — Uy

J. Mandel, B. Sousedik and C. R. Dohrmann, Multispace and multilevel BDDC, Springer (2008)
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Proof: Spectral equivalence (Il)

We define the face restriction operators 6% which takes a function v, and

1. Restrict a function to the macro face F.
2. Extends it by zero to 0T
3. Extends it harmonically to T’

T F T

Up (T)

0F (0n(T)) |™~—

Corollary: Truncation estimate

Let F € Fy(T) and v, € U,, which satisfies {,.~v(v;,) = 0. Then following
estimate holds:

VOF )2 S L+ In(H/R))? (w2 -
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VOF )2 < L+ In(H/R))? w2 -

13/39



Proof: Spectral equivalence (lll)

One can see that for w;, = Qv — v, we have

w,(T) = >, 0F(wy), 9?(%)=%[ﬁ(yh(T'))*G?(yh(T))]
FeFu (T)

Then using the above and triangle inequalities, we get

HQhﬂh_EhHi{h <) ) (AnbF(wy), 0F (wy)),

TeTy FeFu(T)

Each of the terms can be bounded by
(At (wy), 0 (wy)) < [0Fh(T) — ), 1+ 105 @a(T) — ar)l%, 1

where we have added and substracted a constant ar € R.

14/39



Proof: Spectral equivalence (IV)

Since vy, € ﬂNh we can choose ap = Ap(v,(T)) = Ar(v,(T")) so that

j 7 (0a(T') — ar) = 0
F

Then
165 (n(T") — ar)l%, 7 < 105 @a(T) - arp)li, I> norm eq.
S [n (@) el n > lifting
< (1+Wn(H/R))?u,(T)|7,  © truncation

<S (1 + In(H/h))? v, (T > norm eq.

2/\,
Ap, T’
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Problem setup

We solve the Poisson problem with Dirichlet bcs on © = [0, 1]2

—Au=f inQ, wu=g onoQ

We use N, x N, simplexified cartesian meshes, and their Voronoi
counterparts, partitioned into IV, x N,, processors.

Figure 1: Left: simplexified mesh. Right: Voronoi mesh. Distributed amongst
N, = 6 processors, with colors mapping to the processor id.
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Problem setup

We test our preconditioner for several popular schemes in the literature:
+ Hybrid High-Order (HHO)
+ Mixed-order HHO 2
+ Hybridazable Discontinuous Galerkin (HDG) -4

'D. A. Di Pietro and A. Ern, A hybrid high-order locking-free method for linear elasticity on general
meshes, CMAME (2015)

2M. Cicuttin, A. Ern and N. Pigneo, Hybrid High-Order Methods: A Primer with Applications to Solid
Mechanics, Springer (2021)

3B. Cockburn, J. Gopalakrishnan and R. Lazarov, Unified Hybridization of Discontinuous Galerkin,
Mixed, and Continuous Galerkin Methods for Second Order Elliptic Problems, SIAM-NA (2009)
4S. Du and F. Sayas, A note on devising HDG+ projections on polyhedral elements, arXiv (2020)
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Benchmarks

Implementation Julia, using the Gridap' ecosystem. MPI support through
GridapDistributed.jl and PartitionedArrays.jl 2. Solvers implemented in
GridapSolvers.jl3.

We perform weak scalability tests, that is

« constant local problem size, N./N,, ~ H/h
* increasing IV, up to 768 processors

All experiments are run on the Gadi supercomputer at NCI.

'S. Badia and F. Verdugo, Gridap: An extensible Finite Element toolbox in Julia, JOSS (2020)
2S. Badia and A. F. Martin and F. Verdugo, GridapDistributed: a massively parallel finite element toolbox

in Julia, JOSS (2022)
3J. Manyer and A. F. Martin and S. Badia, GridapSolvers.jl: Scalable multiphysics finite element solvers

in Julia, JOSS (2024)
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Results (I)

HDG of structured meshes

iterations

10 15 20 25 10 15 20 25
log10(processors) log10(processors)

Figure 2: Number of CG iterations, as a function of the number of processors.
Cases: HDG with H/h = 8 (left) and H/h = 16 (right).
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Results (Il)

HHO of structured meshes

iterations
iterations

10 15 20 25 10 15 20 25
log10(processors) log10(processors)

Figure 3: Number of CG iterations, as a function of the number of processors.
Cases: HHO with H/h = 8 (left) and H/h = 16 (right).
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Results (lll)

Mixed-order HHO of structured meshes

iterations
iterations

10 15 20 25 10 15 20 25
log10(processors) log10(processors)

Figure 4: Number of CG iterations, as a function of the number of processors.
Cases: Mixed-order HHO with H /h = 8 (left) and H/h = 16 (right).

21/39



Results (1V)

HDG+ of voronoi meshes

iterations
iterations

7
/ » - - - - .
/ /
g // // *

sLe
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1og10(processors) 1og10(processors)

Figure 5: Number of CG iterations, as a function of the number of processors.
Cases: HDG+ with H/h = 8 (left) and H/h = 16 (right).
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Results (V)

HHO of voronoi meshes

iterations
iterations

0 15 20 25 20 25
1og10(processors) 1og10(processors)

Figure 6: Number of CG iterations, as a function of the number of processors.
Cases: HHO with H/h = 8 (left) and H/h = 16 (right).
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Results (VI)

Mixed-order HHO of voronoi meshes

iterations
iterations

/ »
iV / .
//

sLe
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1og10(processors) 1og10(processors)

Figure 7: Number of CG iterations, as a function of the number of processors.
Cases: Mixed-order HHO with H /h = 8 (left) and H/h = 16 (right).
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Thank you!

S. Badia, J. Droniou, J. Manyer, J. Tushar, “Balancing domain decomposition by constraints
preconditioners for non-conforming hybrid discretisation methods”, in preparation.

S. Badia, J. Droniou, J. Tushar, “A discrete trace theory for non-conforming polytopal hybrid
discretisation methods.”, submitted.

J. Manyer, A. Martin, S. Badia “GridapSolvers: Scalable multiphysics finite element solvers
in Julia“, Journal of Open Source Software, 2024.

Computational resources for this work were provided by NCI through the
Oy NCMAS public scheme and the Monash-NCI partnership.
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Appendix A - Implementation details for BDDC (1)

Our preconditioner is given by
B = Qu A, OF + oAy b 1T
Given a residual 7y, it returns a correction z;, = zj, + 25,0 given by
%= On A QTP 2no = IOA;})I(??}L
We can further split the problem by considering U,, = Uy, o @ Uy, where

« U is the subset of U, with zero coarse DoF values.

. ﬁh,c is the complementary, i.e the subset of Qh with at least one
non-zero coarse DoF value.

We can write 2}, = Qh(gh70 ar Eh,c) with

~ T—1 ~ T—1 T~
Zho =ApoTh s Zhe=Aprns Th=QuTh
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Appendix A - Implementation details for BDDC (ll)

Let A be the matrix representation of Ay, i.e the sub-assembled system
matrix. We have that

+ A is block-diagonal, with blocks A* corresponding to subdomains.
+ Each block A* can be locally split into interior/interface blocks, i.e

Ak — Af; Afr
Arr Afp

Also:

+ Let C* be the matrix representation of the coarse constraints, local
to each processor.

* Let R; = diag(R%) and Rr = diag(Rk) be the interior and interface
restrictions, respectively.

* Let W be the matrix representation of 1.
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Appendix A - Implementation details for BDDC (lll)

Interior correction

« The block-diagonal matrix A;; = diag(A%,) is the matrix
representation of A, .

- The block-diagonal matrix R; = diag(R¥) is the matrix
representation of I

Then if we take z, 7 the vector representations of z;, o, 7, respectively, we
have

T A—1 o
zZ0 = RI AII R[T‘

which can be solved locally on each processor.
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Appendix A - Implementation details for BDDC (1V)

Fine correction

The fine correction
> 1—1
Zh,0 = Ap, oTh

can be computed locally by solving

k k ~k k
AT Afr 20,1 Ty
k k \T ~k I
Arr Arr (CF) “|Ror | = [T
(G5 e 0

where %, r the vector representations of z;, o, 7, respectively, and

~k k
20,1 3k g
>k (O rk

20,1 I

Rt
Rt

Ry
Ry

k
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Appendix A - Implementation details for BDDC (V)

Coarse correction

We have ﬁh,c = span{¢,}rca, Where ¢, is the global basis function that
is one on A and zero on all other coarse degrees of freedom. Denote by
® the matrix that has columns ¢,.

We can compute ®*, by solving the local problems

Af; Al of 0
Af; Afp (CHT|-|2f[=]0
ck Ak Iy

The matrix representation of /Th,c is then given by

Al—os 0T 5, = Zsk Z (%) ARk
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Appendix A - Implementation details for BDDC (VI)

Coarse correction’

Generally, S, is assembled into a
single processor and factorized. The
coarse correction then involves:

1. gathering the local coarse
residuals r* = (®*)Tr* into a
single processor,

2. solving the coarse problem, and

3. scattering the result back to
each processor and doing a
linear combination with the
basis, to obtain 2*.

fine-grid MPI coarse-grid MPI
comn}unicalor communicator
R A N SR ) Q©
«
S & &S & S & s
I I

T T T T
[ global communication |

Tc
II PC
Te| ]

OpenMP-based coarse-grid
solution

Figure 8: Processor layout for
computing BDDC corrections.

'S. Badia and A. F. Martin and J. Principe, A Highly Scalable Parallel Implementation of Balancing

Domain Decomposition by Constraints, SIAM J. Sci. Comput. (2014).
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Appendix B - HHO formulation for the Poisson problem (l) ' 2

Given a polynomial order k, we consider the local and global HHO
spaces

Ut = {(vr, (vr)rery) : vr € PX(T), vr € P*(F) VF € Fr}
U, = {((vr)rem, (vF)Fer,) : vr € PX(T) VT € Ty, vp € P(F) VF € F}

k=0 k=1 k=2

'D. Di Pietro and J. Droniou, The Hybrid High-Order Method for Polytopal Meshes: Design, Analysis,

and Applications, Springer, 2020.
2M. Cicuttin, A. Ern and N. Pignet, Hybrid High-Order Methods: A Primer with Applications to Solid

Mechanics, Springer, 2021.
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Appendix B - HHO formulation for the Poisson problem (ll)

Potential reconstruction operator
We define RE v, - UK — PF+1(T) such that Vw e PF+1(T) we have

(VRI;’:HQT, VUJ)T = (VUT, Vw)T + 2 (UF — v, Vuw - nTF)F
Fe]:T

(RZZC"HQT7 w)T = (vr,w)p

Difference operators
We define kv, : US — P*(T) and 6kw. : Uy — PF(F) as

5TUT = ﬂ-T(Rk+1UT —vr) , 5TFUT = 7TF(RICHUT —vF)
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Appendix B - HHO formulation for the Poisson problem (lll)

The global problem is then given by: Find w, € U,, , such that Vv, € U}, ,

ap (g, vy} = bp(vr)
with

an(ur,vy) = Z ar(up,vr), bn(vr) = Z (fyvr)r

TeT TeTh

and where the local contributions are given by

ar(ur, vr) = (VR§“+1UT7 VRI;“HQT)T + s7(ur, vr1)

uT’ ’UT Z h 6TF - 61’}) U, (5§“F - 6!}) QT:I
FeFr
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